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Replica symmetry breaking in neural networks with modified 
pseudo-inverse interactions 

V S Dotsenkot and B Tirozzi 
Dipartimento di Matematica, Universiti di Roma 'La Sapienza', Piazrale Aldo Mora 2, 
00185 Roma, Italy 

Received 25 April 1991 

Abstract. Replica symmetry breaking i s  studied in fully connected neural networks with 
modified pseudo-inverse interactions. The interaction matrix has an intermediate form 
between the Hebb learning rule and the pseudo-inverse one. At low temperatures there is 
a region of parameters where the replica-symmetric solution i s  stable while its entropy is 
negative. It indicates the existence of an alternative solution in which the replica symmetry 
i s  broken. The one-step replica symmetry-breaking solution is found and its properties are 
analysed. 

1. Introduction 

The phenomenon of replica symmetry breaking (RSB)  discovered by Parisi (1979) in 
the mean field solution of the Sherrington and Kirkpatrick (SK) (1975) model of spin 
glasses is now sufficiently well studied and its physical interpretation is clear (see 
Mezard er a /  1987). RSB has been proved to exist in other spin glass-like systems, 
including statistical models of neural networks. However, unlike spin glasses where 
RSB is the crucial characteristic of the low-temperature phase, it is generally believed 
that in neural networks is not very important. 

A classical example is the model proposed by Hopfield (1982). It was shown (e.g. 
see Amit ef a /  1987) that although at a low enough temperature the replica-symmetric 
(RS)  solution is unstable against RSB, that instability is very weak and the true RSB 

solution is not much different from the RS one. The phenomenon of RSB itself was 
proved for that model to be qualitatively similar to that in the SK model with a magnetic 
field below the line of instability of the RS solution, known as the Almeida and Thouless 
line (AT line) (Almeida and Thouless 1978). 

Here we consider a model of neural networks in which the phenomenon of RSB 

appears to be of a qualitatively different kind. 
The model under consideration is the fully connected neural network which, in a 

sense, is intermediate between the Hopfield model and the so-called pseudo-inverse 
model, studied by Personaz er a/ (1985) and by Kanter and Sompolinsky (1987) 
(section 2). 

The motivation, the RS solution and the resulting phase diagram of the considered 
model have been studied in detail by Dotsenko er a/ (1991). 

t On leave from the Landau Institute for Theorelical Physics, Academy of Sciences of the USSR, Moscow, 
USSR. 
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It can he shown (section 3) that there is a certain range of parameters where the 
RS solution is still stable, hut its entropy is becoming negative (so that the zero-entropy 
line goes above the AT line). This indicates that in addition to the stable RS solution 
there exists another solution with presumably ‘exotic’ RSB, which ‘takes’ a part of the 
entropy. As a result, helow the AT line a sort of ‘first-order’ phase transition could he 
expected (with a finite jump in the structure of the order parameter although without 
discontinuity of the free energy). The structure of the RSB state above the AT line could 
then be expected to he very different from the ‘traditional’ one in the SK model and 
in the Hopfield model, since it does not appear as a result of instability of the RS 
solution, but, in a sense, on its own, at a ‘finite distance’ from it. 

A similar phenomenon has been already found in the Cardner and Derrida (1988) 
problem of maximal capacity in neural networks with Ising interactions by Krauth 
and Mezard (1989) (see also Cutfreund and Stein 1990). 

Therefore, it would he reasonable to expect that this could be a rather general 
phenomenon for a certain class of spin glass-like systems, although up  to now it has 
been unclear what kind of general property makes such a system exhibit this effect. 
An essential advantage of the present model is that the considered effect occurs in the 
region of the phase diagram where there are small parameters, and thus an analytic 
approach can be used. 

In section 4 the appearance of the RSB solution is analysed in the ‘normal’ region 
of the phase diagram where the zero-entropy line goes helow the AT line. It is shown 
that when one approaches the intersection of these lines the second-order phase 
transition in the RSB phase has a tendency to turn into a first-order one with a finite 
jump of the order parameter. It is also shown that the RSB solution has a tendency to 
become close to that of one-step RSB. 

In section 5 the one-step RSB solution is found and it is shown that the region 
where it exists does nor coincide with that defined by the zero-entropy line (when 
lowering the temperature the RSB solution appears before the entropy changes sign). 
Although the stability of the obtained RSB solution remains an open question, it is 
shown that its entropy is positive. 

The results obtained are summarized in section 6. 

2. The model 

We consider the model which consists of N Ising spins U( ( i  = 1 , .  . . , N )  and is 
described by the Hamiltonian 

H =$E J ~ ~ ~ ~ ~ .  (1) 
4 

The interaction matrix is taken in the form 

where 

and ( p  = 1,. . , , p) afe quenched uncorrelated patterns (so that the off-diagonal 
elements of the matrix C, equation (3). are of the order l/m). A is the parameter of 
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the model. If A = O  the model ( l ) ,  (2) turns into the Hopfield one, and at h+m the 
structure of the interaction matrix (2) approaches that of the pseudo-inverse model 
studied by Personaz el a/  (1985) and Kanter and Sompolinsky (1987). The motivation 
for this particular choice of the J,  (equation (2)) has been given by Dotsenko el a1 
(1991). It could be obtained from the traditional Hebb learning rule via a local thermal 
noise iterative procedure, and in the RS solution it provides a substantial increase in 
capacity and quality of the retrieval. 

The model will be studied in the thermodynamic limit where both N + m and P + 

while the parameter a = P f N remains finite. 
The free energy of the model is calculated in terms of the replica approach: 

where ((. . .)) denotes averaging over the random f f  and Z" is the replica partition 
function: 

Introducing the fields a:, @$' one obtains 

where the following symbols have been introduced: 

The term containing det( i+Ad), which contribute an irrelevant constant, is omitted. 
The fields a, are connected with the usual overlaps 

as follows, 

(8) 
1 - -  

a , = - I  (1 + AC);:m, 
N "  

while the meaning of the site field is given by the relation 

Following standard calculations similar to those of the Hopfield model (e.g. see 
Amit et of  1987), after averaging over the ff one obtains 

((Z")) = I n do' 1 DQ DR exp(-PNnf(a, Q, R ) )  (10) 

with 
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and where 
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+fop2 P.Y 1 ( r r ’ + i h ~ ~ ) ( ~ ’ + i h ~ ~ ) R ~ ) ) ] .  (11) 

When obtaining the above expression the n x n matrix 6 has been defined as 

1 
N ,  

Q,, = -1 (U: +ih@:)(u:+ih@:) (12) 

and the matrix R,, has been defined as a conjugate variable to equation (12). 

to condense and therefore the parameter a’ in equation (11) has been defined as 
In the above calculations it was assumed that the pattern with number 1 is expected 

ap  = aE=,gC=‘. 

3. RS solution, entropy and stability 

( a )  The RS solution assumes that 

R i f p # y  
4 - 7  = { R, i f p = y  

Q i f p # y  Q,,=l, I V O  i f p = y  

and a p  = a. 
In the n + O  limit, after some algebra, one obtains from equation (11) 

f (a ,  00, Q, R, A )  

( 1 4 )  
A - I  AnR A - 1  InA 1 

2A 2A 2AA 20 p 
+- Qo+--- 

where we have defined 

A 1 + Aa/3(Ro- R )  

and 
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The resulting saddle-point equations for the parameters a, Qo,  Q, R and A are 

P P A 
C = p(Qo- Q )  =? cosh-* - ( a  + m z )  -- 

A A A (17) 

(2i j AA 4 4 .  
P A A 

&A'= 1 +A2aK - A ( A  +2Aja2---2aAR'cosh-' (a  + d a z j ,  

The analysis of these equations and the resulting phase diagram in the space of 

Here we will consider the system in the limit T<< 1, a << 1 and A << 1 where equations 

(b j  T i e  entropy of the RS soiution is easiiy obtained from equation ( i4j :  

parameters T, a and A have been reported by Dotsenko et al (1991). 

(17)-(21)give a = l ,  R = l  and Qo=l.  

(22) P -E  ( a  +a=) tanh a ( a  + a z ) .  
A 

In order to define when the entropy changes sign two limits should be considered: 
(i) For T<< a one gets from equation (17) 

I -  ,.- 
A = l + -  

I - C '  

For the entropy (equation (22)) one obtains 

a 7r2 s= --[C2/2+A(1 + C ) ] +  r- 
2 6 G  ex' ( -A) 

Then in the limit A<< exp(-1/2a) (when the Hopfield model is recovered) the entropy 
becomes negative below 

However, if A is not too small 

and equation (25) indicates that the entropy is always negative. This means that for A 
finite (equation (27)) the entropy changes sign at much higher temperatures. 
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(ii) a<< T<< 1. In this case one gets from equation ( 2 2 )  

a 2  
2 T  

S =  --A+-exp 

Therefore, in this limit, the entropy becomes negative below 

T* 
l+ fT*  In ( l / a )  

T*=0- 

where 

In other words, for h finite (equation (27)) the zero entropy line goes to zero logarithmi- 
cally slow: 

(c )  The stability analysis of the obtained RS solution is fully analogous to that of 
the Hopheid modei (e.g. see Amit et ai  1987). T i e  iine of instabiiity of the RS soiution 
can be shown to be given by the equation 

(YP2((SZ)-(S)2) = (1 -cy (32) 
where S = u+iAlp, and 

Here 

and 

From equation (32) one obtains that for (Y + 0 the line of instabiiity of the RS solution 
(the A T  line) does not depend on A and is given by 

which is the same as in the Hopfield model (Amit e f  a /  1987). The qualitative behaviour 
of the lines Tsz0 and TAT(a)  is summarized in figure 1 .  Therefore, in the region 

( 3 f a )  

the zero-entropy line Ty-o(a) is higher than the Ar line and we are facing the situation 
that at T A ~ ( a )  < T <  T s - o ( ~ )  the RS solution is stable while the entropy is negative. 
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I 
J 

U' 
Figure 1. 

0 

4. 'Traditional' RSB near the AT line 

In this section we investigate the RSB solution near the AT line in the region a > a* 
where the situation is 'normal', i.e. T,=,(a) < TAT(a) (figure 1). Here one can expect 
that in the vicinity of the line TAT the RSB is weak, and that the corrections to the RS 

solution are small. Therefore, in the exact expression for the free energy (11) we can 
put the replica matrix R in the form 

where the off-diagonal corrections are small rpl<< 1. Then, according to the general 
scheme (e.g. see Parisi 1980) we should make an expansion over i up to fourth order. 

In the n + O  limit, when the off-diagonal elements Qy6, and rDy turn into the 
continuous functions Q(x)  and r ( x ) ,  after some algebra (see appendix 1) one obtains 
the following expression for the free energy: 

f ( a .  Qo, A, Q b ) ,  r ( x ) )  

a0 A-1 A-1 I n A  AaR 
= ( 1 +a) a' + - RQo + - Qo - - + - + - 

2 2A 2AA 2AA 2A 

1 
4 +:s d x  r ( x ) + -  ( a , + 2 a , )  Io' dxr(x)' 

-5!o' 2 d x ( ~ r ( x ) ~ + ! ~ d x ' r ( x ' ) ' + 2 r ( x )  

(39) 
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Only for third and fourth order are the terms responsible for the RSB kept. Here 
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X(x)=P Qo-xQ(x)- dr’Q(x’) (40) 

a” = U-’)) 
a,  =(mO2)) 
b = ((S2))3 (41) 

c = @ y  

( I: ) 
and the coefficients are as follows: - 

___ 
__ 

- 
d = a(( S4)). 

The notation (. . .)) indicates the irreducible average according to equations (33)-(35), 
and S = u + i O .  

( S ) 2 = $  ( t a n h i  ( a + a z )  - A ( a + a z )  

The calculations give 

)i P - 

A ) (42) 
P cosh-2- (a +&&) -- 
A B A  

( U  +&Rz) -- 
P A  

+ a r )  - A(a + & R z )  

i 
b = (2 cosh-’ E ( a  + a z )  -- 

A P A  
2 P 

A4 A 
c =- tanh’- (a  + a z )  

The coefficient d > O  and its explicit value is not very important for the results. 
The variation of the free energy (39) gives the following saddle-point equations: 

Q(x) = iSj i+aor(x) -2o , i -b(  xr2(x)+ Jox dyr2(y)+2r(x)  dy  r(y)) 

+ cr’(x)+ dr’(x) (45) 

where T=JAdxr(x), and xO=x(O). 
The functions Q(x)  and r(x) are assumed to be constants in the intervals 0 < x S xo 

a n d x , s x S l :  Q ( x ~ x ~ ) = q ~ ,  Q ( x ~ x , ) = q ~ ,  r (xSxO)=Oand r ( x a x I ) = r l  (figure2). 
Differentiating twice with respect to x one obtains that, in the interval where the 

functions are not constants, 
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$7 . . . . . . . . . . . . . . .  b----i - ? ,  ~ 1 Q '  
40 

P1 . . . . . . . . . . . . . . .  
. .  . .  

X O X 2  xo X I  1 
x x 

Figure 2. 

Since r ( x )  is assumed to be small we may restrict ourselves to a linear approximation 
on x which gives for xo< x s x, 

r ( x )  = A ( x - x , )  (47) 

where 

For the intervals O S  x S xo and x, < x < 1 ,  equation (45) gives 
qo = ( S ) * - 2 a , ~  
q ,  = qO+a,r,  - b(r :+  r*)+cr:+ dr: 

- 

- 

where, using equations (47) and (40), 
I 

2A 
T =  1"' dx r ( x )  = r , (  1 - x,,) +- r: 

2 
r*= 1,' d x  r (x )*  = r:(1 -xo )  +- r: 

3 A  

- 

X" = P(Q0- a 

(1 -xJ2 
aP 

q1 = q a + 7  r l .  

Inserting equations (51) into equations ( S O )  one finally obtains 
- Tr ,  + K r : -  yr:=O 

where 
( l - x " ) 2  

.P 
T =  a o - 7  

K = b(2-X")  - c 
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Non-zero solutions for r, appear only for 7 10,  and the equality 7 = 0 gives the A r  
line. For T<< 1, a<< 1 and A<< 1, using equation (42) for a,, one can then easily get 
the Ar line explicitly, 
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which to the main order does not depend on A. At T > O  ( T <  TAT) for T<< 1 

7 

K 
r I = -  (57) 

and all the other parameters which describe the RSB solutions are defined in equations 
(48), (49) and (51). Qualitatively the obtained RSB solutions are shown in figure 2. 

However, the solution for rl (equation ( 5 7 ) )  makes sense only if K 1 0 and if the 
value of K is not very small. 

Using equations (42) for the parameters b and c one obtains the value of the 
parameters K (equation (54)): 

where xo (equation (49)) is less than 1. The above equations show that when a 
approaches from above the value a*- l/ln(l/A), the coefficient 1 / ~  in equation (57) 
is diverging. At a <a* the parameter K is negative, and the RSB solution of the form 
shown in figure 2 does not exist. 

Actually, the fact that in the region 01 <a* the parameter K < 0, means that the 
true RSB solution which appears below the AT line cannot be described as a small 
deviation from the RS solution. RSB should be expected to be already finite there. The 
form of this true solution is indicated by equations (47) and (48), which in a sense do  
not depend on the limiting value of r I ,  and which shows how the function r ( x )  behaves 
in the region where it is not constant. Equation (48) shows that at a+O the slope of 
the curve r ( x )  is of the order l / a + m ,  i.e. the function r ( x )  could be expected to be 
almost the vertical step. It means that a + 0 the true RSB solution should be expected 
to be close to that given by the one-step RSB. 

5. One-step RSB 

In this section we investigate the region a<< a*-ln(l/A) (figure 1). It will be shown 
that below the temperature T* = 2/ln(4/A), after crossing the transition line TRSH( a )  = 
T* - a (when a << T 2 ) ,  there exists a one-step RSB solution which appears as a finite 
'step' in the functions Q ( x )  and R ( x ) .  The entropy of this solution will be shown to 
be positive. 

In  the one-step RSB approximation one takes the matrices t? and 6 in the form 
shown in figure 3: 

where a , ,  p,  = 1 , .  . . , n / k  and al.  p2 = 1,. . . , k. 
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The free energy depends on r,, r , ,  qo, q1 and k, and these parameters should be 

The calculation of the free energy (equation ( 1 1 ) )  with matrices k and 6 taken in 
defined by the corresponding saddle-point equations. 

the form (59) yields (see appendix 2) 

a a a a a C  f=' 2a  2 +- Cr,,+- xrq, +- In( 1 - C )  -- - 41 +-- 
2 2 2x 2 ( 1 - C )  2 x 1 - c  

where instead of qo, k and r ,  we have introduced the parameters 

x = p k  

C = p k ( q ,  -40)  (61) 
r = r, - r,. 

We study the region T<< 1 and a << T2, and therefore in equation (60) the expansion 
over small a and y=exp(-2/T) can be made. To first order in y it yields 

f ( a ,  ql, C, r', x) 

a hr, 1 a ( 1  -Aa)2r' 
2 l+har '  2x 2 l + h o r '  

+- - +--In( 1 + h a r ' )  -- 

2ap2r '  2ap2r0  2 a p ( l  -ha)r '  - + 
x ( l + A a r ' )  ( l + h a r ' ) 2  ( I + A a r ' )  

where we have introduced r'= rx. 
The saddle-point equations are 

1 
l + h  

a =- 
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1 r' = - 
(1-C) 

41 1 c 
(I-c)* x (I -C)2  

ro=- - - -  

c= - - + - E  A 4YP 
A A2 

a A 2  4yP C = - ( I - C )  ln(l-C)-A+-- +-E 
2 ( l - C )  A 

1 A aA2ro aA(1-Aa) 
A AX A* A2(1-C) 

q,  =- (1  -ha)*--+-- 

4y( l -Aa)-  4aypA +4ayA(l-Aa) 
A A2x(l - C )  A2(1 - C) 

where 

A =  1 + Aar' 

E = e x p  -+-- ( 2 a J J r '  2ap2r, 2ap(l-Aa)r' 
A* A 

In deriving equations (67) (which is af/ax = 0) and (68) (which is aflar '  = O ) ) ,  equations 
(64) have already been used, as well as the approximation 

In( l+ Aar' )  = Aar'-+(ahr')*. (71) 

Solving equations (66) and (67) to leading order in a and A one obtains 

a c= -- A*. 

Equation (64) gives 

(73) a 2  r ' = l - - A .  
2 

Then, t o  leading order in a and A one obtains from equation (66) 

or 

zap2 
x = 

I n ( U 4 p ~ ) '  

The solution for x exists only if 

4yP < A  

or 
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The solution for the other parameters (to leading order) are 

41 =(1  -A)2-AT(1 - A )  

The obtained solutions make sense only for k=s 1 or x s p .  To define the line 
T,,.(a) below which the solution appears one should take x = p in equation (66), to 
obtain 

exp[2ap +2ap2rn-2ap( l  -A)]=-(--- A2 A a A.). 

~ P Y  A 2 
(79) 

To leading order in a ,  T and A one obtains 

T,, , (a)= T*-U (80) 

where T* is given by equation (77) and a << T2. To obtain the entropy the leading 
terms of the free-energy (62) can be represented as follows: 

- f=-f ,+Texp --+- ( ; 2 2 )  

Then for the entropy one obtains 

. y - - = -  Jf AT( I+- - -+ -  ;* ; $) 
aT 4 

Therefore the entropy is positive below T* but is becoming negative below Tn(a),  where 

To(a) =iT* -2a. (83) 

Actually the fact that the entropy is becoming negative at low temperatures may 
represent not the problem of the one-step RSB solution itself, but the problem of the 
approximation used in deriving the free energy (62) from the exact expression (60). 
The structure of the obtained solutions (75) is such that the expansion in  y used when 
deriving the free energy (62) appears to be invalid at T <  T*/2. This is also seen from 
the results for the spi? glass order parameter Q” =(upuy) .  The physical meaning of 
the order parameter Q (equation (12)) used in all the above calculations is not quite 
clear. For the physical spin-spin order parameter (upu7), which has a similar one-step 
RSB structure, one obtains 
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z, with the weight 

V S Dotsenko and B Tirozzi 

z: Ax 
( a  + G z  +\/;;;z,)' [cosh p( a + G z  + &#%,)r'p 

Using the solutions (75) and (78) for the value of the step in the physical order 
parameter one gets 

(87) 

This step has a small but finite value everywhere in the region T <  T R s S ( a )  where 
the RSB solution exists. 

However, the result (87) makes sense only until f i > > h ,  i.e. for temperatures 
T >  T*/2.  Otherwise, the expansion used when deriving equation (87) as well as all 
the other results, is invalid. 

The results (75) and (87) show that after crossing the transition line T,,,(a) 
(equation ( X O ) ) ,  the step in the function Q(x)  appears at the point k =  1 where the 
value of the step is already finite (of the order of exp(-l/T)) and then as (I + O  the 
position of the step k + 0, thus recovering the RS solution at a = 0. 

The results obtained are schematically shown in figures 4 and 5 .  
Note that, unlike the results obtained by Krauth and Mezard (19891, the region 

where the one-step RSB solution exists does not coincide with that defined by the 
zero-entropy line T,=,(a) of the RS solution. 

When lowering the temperature the RSB solution appears before the entropy of the 
RS solution changes sign. 

t Ri 

x 1 Y 1 

l o l  Near TRSBlai I bl a-0 

Figure 5. 
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6. Conclusions 

Quite a few questions remain to be answered. 
The first is in which way the obtained 'exotic' as well 'normal' RSB solutions in 

neural networks could be observed, at least in computer simulations. Also, how strongly 
does the RSB influence, for example, the maximal capacity and the quality of retrieval? 
The model studied here and in the previous paper (Dotsenko et al 1991) could be a 
good tool for the investigation of these problems. It provides a smooth transition from 
the Hopfield model ( A  = 0) where the RSB is weak into a situation where the RSB could 
be expected to be a dominant phenomenon (at A finite), Note that since the 'exotic' 
RSB was observed at (I S l / ln(l /A) and T S  l / ln(l /A) for A finite, it should be present 
everywhere in the low temperature (memory) phase of the system. 

On the other hand, preliminary results of computer simulations made for this model 
by Yarunin (1991) show that at least for the critical capacity u,(A) the experimental 
curve and that obtained from the RS solution (Dotsenko et al 1991) do not differ very 
much even at A finite. 

There are also more general problems. The present study as well the results obtained 
by Krauth and Mezard (1989) indicate that in the situation when the entropy of the 
RS solution changes sign before this solution becomes unstable, the one-step RSB 

solution may appear to be exact (which is the case for example, in the p-spin interaction 
 model forp+m (Gross and Mezard 1984) and in the Potts glass (Gross eta1 1985)). 
To what extent the considered phenomenon is general, and what kind of general 
property allows it to exist in different spin glass-like statistical systems are problems 
to be solved. 
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Appendix 1 

In the exact expression for the free energy (1 1 ) we have to put the matrix k in the 
form given by equation (38), then make an expansion over i up to fourth order, and 
then take the limit n + 0. 

The limit n+O in the second and third terms of the free energy (11) can be taken 
in a standard way (e.g. see Amit er al 1987, Parisi 1979): 

where 

(A1.3) 
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Taking the matrix f? in the form given by equation (38) one obtains, after some 
algebra, 

f=' (1 +:) a2+lj; ( -4 1"' $ In(1 -,y(xj+- a In( 1 -x(x) - p n Q ( n ) ) )  
2 2 n  

aP A-1 AaR A-1 InA +y RQo--Qo+--- 
i L A  I, :n ? ? , A + F  

where the average ((. . .)) in the last term is taken over z, U and CJ with the weight 

and 

a + J i Z z + - u  

The expansion of the last term in equation (A1.4) up to fourth order gives 

r,,(up+iACJp)(u'+iACJ1j 

(A1.6) 

(A1.7) 

In the RHS of (A1.7) the variable S has been introduced by the definition 

S, up + iAW. 

Here as usual to the third and fourth order only the terms which are responsible for 
the RSB are kept. The notation (((. , .))) indicates the irreducible average over U and CJ, 
and indicates the Gaussian average over z. 

In the limit n + 0 one gets 

(A1.8) 

From equations (A1.8), (A1.7) and (A1.4) one gets the free energy (equation ( 3 9 ) ) .  
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Using the representation of the matrices k and 6 (equation ( 5 9 ) )  one easily gets 

(A2.1) 

For the term XoIR&SI one gets 

Therefore, the last term of the free energy (11) can be represented as follows: 

(A2.4) 

After the definition of the variable @ +  ( l / iA)u+& and integrating over 6 one gets 

In the limit n + 0 one obtains 

x c o s h k p ( a + & m z ,  + ~ z ) ] .  

Equations (A2.1), (A2.2) and (A2.6) give the result (60). 
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